
1

HIGH AVAILABILITY AND
FAILOVER TUNING

IN
TERRACOTTA

From the Terracotta Team

Please view the slide notes for more
explanation of the slide contents.

© 2020 Software AG. All rights reserved. For internal use only

Terracotta Server Arrays are composed of one or more "stripes". For a cluster of "N"
stripes, each stripe contains (approximately) 1/Nth of the data stored in the cluster.

Stripes are composed of one or more Terracotta Server processes. Within the stripe
one server is the "active" server, and the other servers (if any) are mirror, or
"passive", servers. Mirror servers receive data replication messages from the active
server in order to keep their view of the data consistent with the active.
(Mirrors/passives also constantly receive other cluster state information from the
active, such that the cluster state is also consistent).

When the active server fails (crashes, or is out of contact due to a network failure, or
etc.):
* the surviving passive/mirror servers begin work to elect a new active server
* clients attempt to locate an active server in order to switch to it to continue their

work

This is called "fail-over".

2

2 |

WHAT IS FAILOVER?

• In the event of failure of an active server, a new active is elected by the surviving
mirror (passive) servers

• Clients switch from the failed active server to the newly elected active server to
continue performing operations

© 2020 Software AG. All rights reserved. For internal use only

This picture depicts:

* a stripe with 3 servers: S1, S2, and S3
* S3 is currently the active server, as denoted by "A"
* S1 and S2 are currently mirror servers, as denoted by "M"
* Some number of clients are connected to the active server (and presumably
retrieving/storing data)

3

3 |

FAILOVER EXAMPLE – INITIAL STATE NORMAL OPERATIONS

© 2020 Software AG. All rights reserved. For internal use only

M

A

Clients

M

S1

S2

S3

Active

Mirror

Mirror

This picture depicts:

* the active server has failed

4

4 |

FAILOVER EXAMPLE – ACTIVE SERVER FAILS

© 2020 Software AG. All rights reserved. For internal use only

M

A

M

Clients

X

This picture depicts:

* The surviving servers of the stripe detect the failure of the active server and
automatically suspend their activities
* The surviving servers begin an election to determine which of them will become the
new active server

5

5 |

FAILOVER EXAMPLE – ELECTION IS HELD BY SURVIVORS

© 2020 Software AG. All rights reserved. For internal use only

?

?

Clients

Election

Suspended

Suspended

This picture depicts:

* A new active server has been elected
* The other server has returned to the role of being a mirror/passive
* The clients have automatically connected to the newly elected active server, and
resumed work

This fail-over process successfully preserved availability of the data – meaning
applications using the data remain available for normal usage.
However! This eagerness to elect a new active can also lead to tricky situations, such
as so-called "split-brain"

6

6 |

FAILOVER EXAMPLE – NEW ACTIVE IS ELECTED

© 2020 Software AG. All rights reserved. For internal use only

M

A

Clients

A "Split Brain" is the situation where two or more servers (of the same stripe) are in
"active" mode at the same time. It is a (possible) side-effect of the cluster’s
eagerness to be highly available to clients.

A split-brain is typically caused when network failures (aka "a partitioning of the
network") split a cluster into smaller subgroups (subgroups of servers that can
communicate with each other, but not with the servers in the other
subgroups). Because they can't communicate with each other, each sub-group
assumes that all the other servers have failed. In order to remain available, each
subgroup elects a new active server within them.

A Split-brain situation is very dangerous to data consistency, because clients that are
able to connect to them can modify data, yet those changes are not replicated to the
other active.

When the split-brain is healed (I.e. when the network between the multiple active
servers is fixed), only one of the actives will survive a new election, and the data
changes that occurred in the other active will be lost!

7

7 |

WHAT IS A SPLIT BRAIN ?

• A "Split Brain" is the situation where two or more servers (of the same stripe) are
in "active" mode at the same time.

• It is a possible side-effect of the cluster’s eagerness to be highly available to
clients

• Caused when network partitions split a cluster into smaller subgroups
(subgroups of servers that can communicate with each other, but not with the
servers in the other subgroups) and each subgroup elects a new active server
within them.

• A Split-brain situation is VERY dangerous to data consistency

© 2020 Software AG. All rights reserved. For internal use only

This picture depicts:

* A stripe with 3 servers, operating normally, with one active server, two mirror
servers, and a number of clients using the active server

8

8 |

SPLIT BRAIN EXAMPLE – NORMAL OPERATIONS

2020 Software AG. All rights reserved. For internal use only

M

A

M

Clients

This picture depicts:

* A network partition (depicted by the vertical line) has occurred
* Some clients ("Partitioned Client set 2") can still "see" (communicate with) the
active server
* Other clients ("Partitioned Client set 1") cannot see the active server, but they can
see the mirror servers
* The mirror servers can see each other but not the active server
* The active server can see no other servers

9

9 |

SPLIT BRAIN EXAMPLE - NETWORK PARTITION OCCURS

© 2020 Software AG. All rights reserved. For internal use only

M

A

M

Partitioned
Client Set 1

Partitioned
Client set 2

This picture depicts:

* All three servers detect loss of communication with each other, and go into
suspended mode (prevent client operations)
* Each subgroup of servers holds an election

10

10 | © 2020 Software AG. All rights reserved. For internal use only

?

Partitioned
Client Set 1

Partitioned
Client set 2

?

?

Election

Election

SPLIT BRAIN EXAMPLE - ELECTIONS BEGIN

This picture depicts:

* Each subgroup of servers elects an active server
* The clients in Partitioned Client Set 1 connect to the active server that they can
reach, and resume work
* The clients in Partitioned Client Set 2 connect to the active server that they can
reach, and resume work

A Split-Brain has formed!

Data consistency between the two actives will be lost if any data
adds/updates/deletes are performed by the clients.

When the split-brain is healed (I.e. when the network between the multiple active
servers is fixed), only one of the actives will survive a new election, and the data
changes that occurred in the other active will be lost!

11

11 | © 2020 Software AG. All rights reserved. For internal use only

M

A

Partitioned
Client Set 1

Partitioned
Client set 2

A Won

Won

SPLIT BRAIN EXAMPLE - ELECTION COMPLETES

Split Brain!

12

12 |

SPLIT BRAIN – IS IT ALWAYS A BAD THING?

© 2020 Software AG. All rights reserved. For internal use only

Is Split-Brain always bad?
Most people would agree yes ... but it depends upon your use case!

For instance:
• Some use cases are read-only, in which case there is no risk of loss of data

consistency, and the continued availability of data during split-brain is a good
thing!

• Cache data is already always drifting away from consistency with the SoR …
in some cases, more loss of consistency is no big deal

• etc.

13

13 |

AVOIDING SPLIT BRAIN, AVOIDING LOSS OF AVAILABILITY

© 2020 Software AG. All rights reserved. For internal use only

THE CAP THEOREM
A Terracotta Server Array (TSA), being a distributed system, is subject to the
constraints of the CAP Theorem.

The CAP Theorem states that it is impossible for a distributed system to
simultaneously provide guarantees for Consistency, Availability, and Partition
tolerance. (see https://en.wikipedia.org/wiki/CAP_theorem)

A TSA always seeks to be tolerant of network partitions so a choice must be made
between data consistency and service availability.

The "failover-priority" cluster property can be used to "tune" which behavior you
would like to favor/guarantee in the case of a potential split-brain scenario.

14

14 |

FAILOVER PRIORITY CONFIGURATION

You must configure your Terracotta Server Array to favor either "availability" or
"consistency" of data when situations arise that could lead to split-brain.

• To favor availability:
failover-priority=availability

• To favor consistency:
failover-priority=consistency

© 2020 Software AG. All rights reserved. For internal use only

Favoring the "availability" of the data means that servers are much less likely to
remain in a "suspended" state (more likely to promote themselves to be "active")
when they lose contact with other servers.

This means that they can be used by clients to perform operations on the
data. However it also means that another server may also be in active state at the
same time!

15

15 |

FAILOVER PRIORITY - AVAILABILITY

• Cluster remains highly available in the case of server failures or network
partitions

• Risk of getting into a split-brain scenario exists

© 2020 Software AG. All rights reserved. For internal use only

Favoring the "consistency" of the data means that servers may stay in the
"suspended" state when they lose contact with other servers.

This means that they cannot be used by clients to perform operations on the
data. However it also means that there is (almost) no risk of other servers being in
active state at the same time.

Make sure the stripe has an odd number of voting participants so that there is no
ambiguity in elections!

16

16 |

FAILOVER PRIORITY - CONSISTENCY

• Mandates majority quorum for an active election
• Ensures that there will always be only one active server in a stripe irrespective of

the kind of failure in the cluster – no split brain
• Sacrifices availability in certain situations

© 2020 Software AG. All rights reserved. For internal use only

Configurations with odd numbers of TC servers per stripe (or odd number of servers +
voters) is recommended to reduce the likelihood of tie votes (and servers "stuck" in
"suspended" mode). More on "voters" in upcoming slides.

17

17 |

QUORUM WITH GUARANTEED CONSISTENCY

Ø An election is won if and only if a node gets > 50% votes

Ø Votes required out of total number of stripe members:
Ø 5 node -> 3
Ø 4 node -> 3
Ø 3 node - > 2
Ø 2 node -> 2

When configured for "availability", an election is won when receiving majority of votes out of all stripe nodes
that can be communicated with (rather than out of the total number of stripe members).

© 2020 Software AG. All rights reserved. For internal use only

This picture depicts:

* A three-server stripe, with an active and two mirrors
* A network partition (depicted by the vertical line) has occurred
* Some clients ("Partitioned Client set 2") can still "see" (communicate with) the
active server
* Other clients ("Partitioned Client set 1") cannot see the active server, but they can
see the mirror servers
* The mirror servers can see each other but not the active server
* The active server can see no other servers

18

18 |

NETWORK PARTITION
WITH FAILOVER-PRIORITY = CONSISTENCY

© 2020 Software AG. All rights reserved. For internal use only

M

A

M

Partitioned
Client Set 1

Partitioned
Client set 2

This picture depicts:

* All three servers detect loss of communication with each other, and go into
suspended mode (prevent client operations)
* Each subgroup of servers holds an election

19

19 |

QUORUM ELECTION

© 2020 Software AG. All rights reserved. For internal use only

?

Partitioned
Client Set 1

Partitioned
Client set 2

?

?

Election

Election

This picture depicts:

* The subgroup with two servers is able to elect a new active (because it receives 2/3
votes)
* The subgroup with one server is unable to elect a new active (because it receives
1/3 votes)
* The clients in Partitioned Client Set 1 connect to the newly elected active server
that they can reach, and resume work
* The clients in Partitioned Client Set 2 are unable to perform work because the only
server they can reach is suspended

A Split-Brain has been avoided!
(at the cost of lost availability to some clients)

Note that the set of clients in "Partitioned Client set 2" may be zero. Note that the
same may be true about "Partitioned Client set 1" !

20

20 |

QUORUM ELECTION
WITH FAILOVER-PRIORITY=CONSISTENCY

© 2020 Software AG. All rights reserved. For internal use only

M

?

Partitioned
Client Set 1

Partitioned
Client set 2

A

Lost

Won

21

21 |

LIMITED AVAILABILITY OF CONSISTENT CLUSTER

When using failover-priority=consistency, there are cases where loss of availability
is possible.

Most common scenarios leading to availability loss:
• Failure of the active server in a two-server stripe
• A network partition splitting a stripe into two equal-sized subgroups

In both cases the election will result in a 50% vote, failing the >50% requirement.

© 2020 Software AG. All rights reserved. For internal use only

This picture depicts:

* A stripe with 2 servers, operating normally, with one active server, one mirror
server, and a number of clients using the active server

22

22 |

2-NODE QUORUM – NORMAL OPERATIONS

© 2020 Software AG. All rights reserved. For internal use only

M A

Clients

This picture depicts:

* The active server fails, and clients lose their connection
* The surviving server runs an election

Note that the surviving server has no way of telling the difference between the
network being partitioned and the other server actually not being running. Either
way, all it knows is that it cannot communicate with it.

23

23 |

2-NODE QUORUM

© 2020 Software AG. All rights reserved. For internal use only

? A

Clients

X
Election

This picture depicts:

* The surviving server receives only 50% of the vote (less than the required >50%)
* The surviving server is "stuck" in suspended mode
* The clients are unable to connect to and use any server

Because the remaining server is told not to risk creating a split-brain (via failover-
priority=consistency), availability of service is lost until the failed server comes back
online.

Again, note that the surviving server has no way of telling the difference between the
network being partitioned and the other server actually not being running. Either
way, all it knows is that it cannot communicate with it.

24

24 |

2-NODE QUORUM WITH FAILOVER-PRIORITY=CONSISTENCY

© 2020 Software AG. All rights reserved. For internal use only

? A

Clients

X• Lost

Two-server stripes are prone to problems – split-brain when in "availability" mode,
loss of availability when in "consistency" mode.

Two-server stripes are a very commonly desired deployment model – they add
redundancy, but only incur the cost of one more machine (per stripe).

The Terracotta platform includes the concept of additional "voters". Voters are not
TC Servers, but they participate in the election process, in order for there to be an
additional vote in order to break ties / reach quorum.

Terracotta clients can be configured to participate as voters. In which case they run
an additional service within the client application which monitors for the need to cast
a vote.

A light-weight stand-alone "voter" process can be ran, which monitors for the need to
cast a vote.

Multiple voters can be used so that there is high-availability of voters themselves!

25

25 |

SOLUTIONS FOR HA FOR 2-NODE CLUSTER
Ø Add a third server to the stripe

Ø A fine solution – adds additional resilience in case another server fails before restoration of the first failure
Ø But, costs an additional machine

Ø Terracotta allows you to add additional, light-weight voter into the election process in
order to achieve a safe quorum.
Ø Voter options

Ø Terracotta clients
Ø Can be configured to act as "voters"

Ø Stand-alone process
Ø One or more light-weight "voter" processes can be ran

Ø Manual operator intervention can promote a suspended server to be active
Ø Delayed restoration of service

© 2020 Software AG. All rights reserved. For internal use only

26

26 |

FAILOVER PRIORITY – CONSISTENCY - VOTERS

Configuring the servers in a cluster to expect extra voters is simple.

The cluster is configured to expect N additional votes when elections are held
(default is 0). You can run a larger number of voters than the configured number
of voter "slots", in which case the "extra" voters wait for registered voters to fail,
and then register themselves to take their place (resulting in HA for voters
themselves).

Simply add to the "consistency" setting the number of external votes that elections
will expect:

failover-priority=consistency:1

© 2020 Software AG. All rights reserved. For internal use only

The stand-alone voter process executable can be found under the installation
directory in the "tools/voter/bin" folder.

When running the voter process, give it the host:port for multiple servers of the
cluster, to ensure that the voter is able to connect even if one is down.

27

27 |

STANDALONE VOTER

Script to start a standalone voter process

<install dir>/tools/voter/bin/start-voter.sh -connect-to <host:port>,<host:port>,...

Multi-clusters can be supported by one voter process by adding multiple "connect-to" parameters.

© 2020 Software AG. All rights reserved. For internal use only

This picture depicts:

* A stripe with 2 servers, operating normally, with one active server, one mirror
server, and a number of clients using the active server
* A stand-alone voter process monitoring the cluster

28

28 |

EXAMPLE WITH A STANDALONE VOTER

© 2020 Software AG. All rights reserved. For internal use only

M A

V

Clients

This picture depicts:

* A network partition (depicted by the vertical line) has occurred
* Some clients ("Partitioned Client set 2") can still "see" (communicate with) the
previously active server
* Other clients ("Partitioned Client set 1") cannot see the active server, but they can
see the mirror server
* The mirror server can no long see the previously active server
* The active server can see no other servers
* The voter can see the mirror server, but not the active server

29

29 |

QUORUM ELECTION…

© 2020 Software AG. All rights reserved. For internal use only

?

Partitioned
Client Set 1

Partitioned
Client set 2

?

V

This picture depicts:

* Both servers run an election
* The previously active server can only receive its own vote, so it loses the election
and remains suspended
* Some clients ("Partitioned Client set 2") can still "see" (communicate with) the
previously active server, but can't use it because it is suspended
* The voter casts a vote for the previously mirror server, so it receives 2/3 vote, which
is >50%, so it wins the election and becomes active
* The clients in "Partitioned Client set 1") see the new active, connect to it, and
resume work

Note that the set of clients in "Partitioned Client set 2" may be zero. Note that the
same may be true about "Partitioned Client set 1" !

30

30 |

QUORUM ELECTION…

© 2020 Software AG. All rights reserved. For internal use only

?

Partitioned
Client Set 1

Partitioned
Client set 2

A

Lost

Won

V

Vote

You can specify more than 1 additional voter if you wish. Make sure that the total
number of voters + number of members per stripe is an odd number!

Some sample code for instantiating a voter service within a client application.

31

31 |

VOTER EMBEDDED WITHIN CLIENTS

• Server configuration:

failover-priority=consistency:3

• Client configuration:

TCVoter voter = new TCVoter();
voter.register("my-cluster-0”, "terracotta://<host>:<port>,<host>:<port>");

© 2020 Software AG. All rights reserved. For internal use only

This picture depicts:

* A stripe with two servers, operating normally, with one active server, one mirror
server,
* There are five clients running
* Each client has been configured to have an embedded voter service, but only three
of them are registered and can cast votes (because the server configuration
is failover-priority=consistency:3)
* If one of the clients currently registered to vote fails, one of the other clients will
register themselves to vote

With two servers and three voters, elections will consist of a total of 5 expected
votes, resulting in a total of 3 votes required for quorum (>50%).

32

32 |

VOTER EMBEDDED CLIENTS

© 2020 Software AG. All rights reserved. For internal use only

M A

C1 C2 C5C3 C4

This picture depicts:

* A network partition has occurred
* One side of the partition contains: one server, one client that is an active voter, and
one client that is not an active voter
* The other side of the partition contains: one server, two clients that are active
voters, and one client that is not an active voter

33

33 |

VOTER EMBEDDED CLIENTS

© 2020 Software AG. All rights reserved. For internal use only

? ?

C1 C2 C5C3 C4

This picture depicts:

* An election is held
* Each server casts a vote for itself
* One server can only receive one additional vote
* The other server can receive two additional votes

34

34 |

VOTER EMBEDDED CLIENTS

© 2020 Software AG. All rights reserved. For internal use only

? ?

C1 C2 C5C3 C4

Vote Vote Vote

This picture depicts:

* The election completes
* The server that lost the election remains suspended, and the clients that can only
see it are unable to perform work
* The server that received 3 total votes becomes active, and the clients that can see it
resume work

35

35 |

VOTER EMBEDDED CLIENTS

© 2020 Software AG. All rights reserved. For internal use only

A ?

C1 C2 C5C3 C4

36

36 | © 2020 Software AG. All rights reserved. For internal use only

